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Szczecin cosmology group



Where is Szczecin?

Szczecin cosmology group

Cosmology group 
cosmo.usz.edu.pl
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Geometrical-optics vs wave-optics
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Geometrical-optics approximation breaks when



M3D,L ≤ 105M⊙ [ (1 + zL)f
Hz ]

−1

f ⋅ Δt ≤ 1
R.Takahashi,Astrophys.J.835,103(2017),arXiv:1606.00458 [astro-ph.CO]










GO stands!

LHS = 104 M⊙

f ≈ 102 Hz

RHS = 103 M⊙



GL of GW h(t)



GL of GW

=∫ ⋅ e−i2πftdt

∫
∞

−∞
h(t) ⋅ e−i2πftdt = h̃( f )



GL of GW h̃( f ) ⋅ F(θs, f ) = h̃L( f )

× =



GL of GW h̃( f ) ⋅ F(θs, f ) = h̃L( f )

× =
Unlensed


Lensed



GL of GW

=∫ ⋅ ei2πftdf

∫
∞

−∞
h̃L( f ) ⋅ ei2πftdf = hL(t)



GL of GW  vs hL(t) h(t)

Unlensed


Lensed



Amplification Factor

h̃( f ) ⋅ F(θs, f ) = h̃L( f )

• Geometrical Optics:


- F( f ) = ∑
j

μ( j)exp(2πifΔt( j) − in( j)π/2)

• Wave Optics:


- F(w, y) = − iweiwy2/2 ∫
∞

0
dx x J0(wxy)exp {iw [ 1

2
x2 − Ψ(x)]}

• 
 • 
 •w =
1 + zL

c
DSDLθ2

E

DLS
2πf x = | ⃗x | = | ⃗θ / ⃗θ E | y = | ⃗y | = | ⃗θs / ⃗θ E |



High accuracy on  constraints 
from gravitational wave lensing event

H0

Based on arXiv:1911.11786 -Phys.Dark Univ. 28 (2020) 100517

with V. Salzano 

https://arxiv.org/abs/1911.11786


Cosmology

F(w, y) = − iweiwy2/2 ∫
∞

0
dx x J0(wxy)exp {iw [ 1

2
x2 − Ψ(x)]}

• 


• 


•

w =
1 + zL

c
DSDLθ2

E

DLS
2πf

x = | ⃗x | = | ⃗θ / ⃗θ E |

y = | ⃗y | = | ⃗θs / ⃗θ E |



EM-GW time-delay

GO: TEM(x, y) =
1
2

(x − y)2 − ψ(x)

WO:  TGW(w, y) = −
i
w

ln ( F(w, y)
|F(w, y) | )

[Schneider, Ehlers, Falco 1992]

How?
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[Takahashi 2016]

• 


• 


•

w =
1 + zL

c
DSDLθ2

E

DLS
2πf

x = | ⃗x | = | ⃗θ / ⃗θ E |

y = | ⃗y | = | ⃗θs / ⃗θ E |



EM-GW time-delay
How?

TEM,±−GW(y, w) = TEM,±(y) − TGW(y, w)

the arrival time difference



Lens Models

1. singular isothermal sphere (SIS) 

  

with a stellar dispersion velocity  km/s 

ρ(r) =
σ2

*

2πG
1
r2

σ2
* = 220

2. Navarro-Frenk-White (NFW) 
  

assuming a realistic observed model [Buote and Barth 2019]

ρ(r) =
ρ0

r
θ* (1 + r

θ* )
2



Methodology

• we calculate  for a large set of input parameters ΔTEM−GW
{Ωm, H0}

• we assume an independent prior on  from Planck, Ωm
Ωm = 0.3061 ± 0.0052

• we infer the uncertainty on  by crossing the prior with 
the time-delay uncertainty 

H0



Methodology
uncertainty on GW time-delay

σΔT = (2πfρ2)−1

where
[Huerta at el. 2015]

ρ2 = ̂ρ2 ⋅ (1 + z)4( forb

fobs )
−2/3



Methodology

• state-of-the-art sample made of 65 pulsars observed 
with PTA

• an “optimistic” future sample of 1000 pulsars detected 
with SKA

[Perera at el. 2019]

[Weltman at el. 2018]



Results
NFW lens - IPTA 65 pulsars array



Results
NFW lens - SKA 1000 pulsars array



Results

H2(z) = H2
0 ⋅ [Ωγ(1 + z)4 + Ωm(1 + z)3 + ΩΛ(1 + z)3(1+w)]



Conclusions 1/3

• need for different measurement to decrease the error 
( )σ ∼ 1/ n

• today observations could match current precision on H0
• SKA will give decisive results 



Mass Sheet Degeneracy
Based on arXiv:2104.07055 - Phys. Rev. D 104, 023503 (2021)


with J.M. Ezquiaga and V. Salzano 

https://arxiv.org/abs/2104.07055


Mass Sheet Degeneracy

• Scalings of lens mass:

-  κ → κλ = λκ + (1 − λ)

• Scaling angles:

- ⃗α → ⃗α λ = λ ⃗α + (1 − λ) ⃗θ

- ⃗θs → ⃗θ s, λ = λ ⃗θs
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 - surface mass density

κ = Σ/Σcr

Σ

E. E. Falco,  M. V. Gorenstein,   and I. I. Shapiro, ApJ 289, L1 (1985)



Why a problem?

• Observables are preserved!

• Problems: e.g. biased 
estimations of mass lens

• Biased estimation of 
cosmological parameter, e.g. 
H0

MSD

• EM geometrical optics regime: 
multiple images; independent 
mass estimation of the lens (e.g. 
dynamics)

• EM wave optics regime: multiple 
lenses

• In GW lensing: 1 image and 1 
lens can break MSD!

Can we solve it?



Gravitational Lensing of Grav. Waves

•  h̃( f ) ⋅ F( f, θs) = h̃L( f )

• F(w, y) = − iweiwy2/2 ∫
∞

0
dx x J0(wxy)exp {iw [ 1

2
x2 − Ψ(x)]}

• Where:

• w =
1 + zL

c
DSDLθ2

E

DLS
2πf

• x = | ⃗x | = | ⃗θ / ⃗θ E |

• y = | ⃗y | = | ⃗θs / ⃗θ E |

•  -  Bessel function of 0-th 
order
J0

•  - dimensionless effective 
lensing potential
Ψ

NB: spherical symmetry!

 T. T. Nakamura and S. Deguchi, Progress of TheoreticalPhysics Supplement133, 137 (1999).

→ Fλ

yλ Ψλ



Lensed waveforms under 
mass-sheet transformation

Qualitative analysis



Lensed GWs
3 regimes

• Geometrical Optics


f ⋅ Δt ≫ 1

ML > 105[(1 + zL)f ]−1

R.Takahashi,Astrophys.J.835,103(2017),arXiv:1606.00458 [astro-ph.CO].

MS = 60 M⊙ − zS = 0.5

ML = 104 M⊙ − zL = 0.1 − y = 5

no MSD 
breaking



Unlensed           Lensed

• Wave Optics


f ⋅ Δt ≲ 1

ML ≤ 105[(1 + zL)f ]−1

3 regimes

Lensed GWs

R.Takahashi,Astrophys.J.835,103(2017),arXiv:1606.00458 [astro-ph.CO].

MS = 100 M⊙ − zS = 0.1
ML = 100 M⊙ − zL = 0.01



Lensed GWs Wave optics

q = 0.1

q = 0.1 & s1,2;z = {0.7,0.2}

q =
m2

m1
= 1



Lensed GWs
Wave optics

q = 1



Interference regime: 
f ⋅ Δt ≈ 1
3 regimes

Lensed GWs

MS = 100 M⊙ & q = 1 & zS = 0.1ML = 500 M⊙ & y = 1 & zL = 0.01



Interference regime: 
f ⋅ Δt ≈ 1
3 regimes

Lensed GWs

ML = 500 M⊙ & y = 1 & zL = 0.01 MS = 100 M⊙ & q = 1 & zS = 0.5



Lensed  
GWs

Interference 

regime

ML = 500 M⊙ & y = 1 & zL = 0.01

MS = 100 M⊙ & q = 1 & zS = 0.1


f ⋅ Δt ≈ 1



S/N - template matching
Quantitative analysis



Signal-to-Noise ratio
• 


• Inner product:

s(t) = h(t) + n(t)

ρ = (s |hT)
(hT |hT)

≈ (h |hT)
(hT |hT)

(a |b) = 4 Re [∫
∞

0

ã( f ) ⋅ b̃*( f )
Sn( f )

df]
•  - (single-sided) power 

spectral density (L1-O3-LIGO)
Sn( f )

 M. Maggiore,Gravitational Waves:  Volume 1:  Theory and Experiments,Gravitational Waves (OUP Oxford, 2008)

Δχ2 ≈ 2ρ2
opt [1 −

ρ
ρopt ]Confidence region: 3σ → Δχ2 ≈ 11.8



S/N
• 


• 


• 


• 


• GO 


• Int.


• WO

MS = 100 M⊙

zS = 0.1

zL = 0.01

3σ → Δχ2 ≈ 0.998

ML = 500M⊙
y = 10

ML = 500M⊙
y = 1

ML = 100M⊙
y = 1



Interference

 regime λmin = 0.93 λ = 1 λmax = 1.03

ρ o
pt

≈
11

ρ o
pt

≈
55

λmin = 0.99

S/N

λ = 1 λmax = 1.01

Signal

 




 


ML = 500
y = 1

zS = 0.5

Signal

 




 


ML = 500
y = 1

zS = 0.1



Interference regime λmin = 0.93 λmax = 1.03

Δy < 40 %
ΔML ≈ 35 %

Δy ≈ 5 %
ΔML ≈ 6 %

λmin = 0.99

S/N

λmax = 1.01

>
ΔML ≈ 12 − 20 %

>

 P. Schneider and D. Sluse, Astron. Astrophys.559, A37(2013), arXiv:1306.0901 [astro-ph.CO].

ρ o
pt

≈
11

ρ o
pt

≈
55



Conclusions 2/3



Conclusions 2/3
1. We analysed how MSD behave in GW lensing
2. In the GO regime it can not be broken 
3. In WO can be broken in some cases
4. In interference regime is broken
5. How well it is broken depends on the strength of  

the signal and sensitivity of detectors. Nowadays 
we might have up to  and Δy ≈ 5 % ΔM ≈ 6 %



High precision lens 
modelling

Based on arXiv:2111.01163

with D.F. Mota and V. Salzano 

https://arxiv.org/abs/2111.01163
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High precision lens modelling


zL = 0.5 zL = 0.15

Lens mass profile



High precision lens modelling


zL = 0.5 zL = 0.15

Lensed waveforms







zS = 1

Ms = 108 M⊙

ML(rc) = 109 M⊙



                                SNR of the signal


             lensed / unlensed


                         3 free parameters


                  threshold


We would need 

ρ ≈ 220
ρ

ρopt
= 1 − 4 ⋅ 10−7

Δχ2 ≈ 14.2
ρ

ρopt
= 1 − 1.5 ⋅ 10−4 3σ

ρ ≈ 4000

Unlensed vs lensed
Lensed waveforms



Unlensed vs lensed
Lensed waveforms


ρ = 220

ρ = 800



                                SNR of the signal


                        SIS / gNFW 


                         2 free parameters


                              threshold

ρ ≈ 100
ρ

ρopt
= 0.9869 γ=2

Δχ2 ≈ 11.8
ρ

ρopt
= 0.9994 3σ

Constraining lens models



Constraining lens models

ρ = 100



                                SNR of the signal


               NFW / NFW-2


                        3 free parameters


                  threshold


We would need 

ρ ≈ 220
ρ

ρopt
= 1 − 1.4 ⋅ 10−6

Δχ2 ≈ 14.2
ρ

ρopt
= 1 − 1.4 ⋅ 10−4 3σ

ρ ≈ 2200

Constraining lens models



Constraining lens models


ρ = 220

ρ = 1000



Conclusions 3/3
1. Lensed events can be misinterpreted by 

unlensed one 
2. Studying the phase of the signal is more 

effective than matched filtering
3. We can differentiate between lens models
4. Differentiating between models is useful to 

study dark matter/dark energy content


